设为首页 | 加入收藏
化学吸附
穿透曲线分析
渗透率分析
蒸汽吸附
泡压法孔径分析
比表面积测试仪
比表面积仪
比表面积及孔隙度分析仪
比表面积分析仪
孔隙度分析仪
静态容量法孔径分析仪
全自动氮吸附比表面积分析仪
孔径分析仪
静态法比表面和孔径分析仪
介孔孔径分析仪
产品中心
售前服务
售后服务
经销商服务
购买指南
常见问题
资料下载
服务与支持
应用领域
解决方案
分析应用
展会活动
市场信息
行业新闻
公司新闻
新闻动态
公司概况
发展历程
资质荣誉
联系我们
关于我们
主营产品:

比表面积仪,孔隙度分析仪,比表面积测定仪,比表面积测试仪,孔径分析仪,比表面积分析仪

技术文章
首页 >>> 技术文章

吸附等温线

◆六类吸附等温线类型
几乎每本类似参考书都会提到,前五种是BDDT(Brunauer-Deming-Deming-Teller)分类,先由此四人将大量等温线归为五类,阶梯状的第六类为Sing增加。每一种类型都会有一套说法,其实可以这么理解,以相对压力为X轴,氮气吸附量为Y轴,再将X轴相对压力粗略地分为低压(0.0-0.1)、中压(0.3-0.8)、高压(0.90-1.0)三段。那么吸附曲线在:
低压端偏Y轴则说明材料与氮有较强作用力(I型,II型,Ⅳ型),较多微孔存在时由于微孔内强吸附势,吸附曲线起始时呈?型;低压端偏X轴说明与材料作用力弱(???型,Ⅴ型)。
中压端多为氮气在材料孔道内的冷凝积聚,介孔分析就来源于这段数据,包括样品粒子堆积产生的孔,有序或梯度的介孔范围内孔道。BJH方法就是基于这一段得出的孔径数据;
高压段可粗略地看出粒子堆积程度,如?型中如*后上扬,则粒子未必均匀。平常得到的总孔容通常是取相对压力为0.99左右时氮气吸附量的冷凝值。
◆几个常数
1.液氮温度77K时液氮六方密堆积氮分子横截面积0.162平方纳米,形成单分子层铺展时认为单分子层厚度为0.354nm
2.标况(STP)下1mL氮气凝聚后(假定凝聚密度不变)体积为0.001547mL
 例:如下面吸脱附图中吸附曲线p/p0*大时氮气吸附量约为400 mL,则可知总孔容=400*0.001547=400/654=约0.61mL
3.STP每mL氮气分子铺成单分子层占用面积4.354平方米
 例:BET方法得到的比表面积则是S/(平方米每克)=4.354*Vm,其中Vm由BET方法处理可知Vm=1/(斜率+截距)
◆以SBA-15分子筛的吸附等温线为例加以说明
此等温线属IUPAC 分类中的IV型,H1滞后环。从图中可看出,在低压段吸附量平缓增加,此时N2 分子以单层到多层吸附在介孔的内表面,对有序介孔材料用BET方法计算比表面积时取相对压力p/p0 = 0.10~0.29比较适合。在p/p0 =0.5~0.8左右吸附量有一突增。该段的位置反映了样品孔径的大小,其变化宽窄可作为衡量中孔均一性的根据。在更高p/p0时有时会有第三段上升,可以反映出样品中大孔或粒子堆积孔情况。由N2-吸脱附等温线可以测定其比表面积、孔容和孔径分布。对其比表面积的分析一般采用BET(Brunauer-Emmett-Teller)方法。孔径分布通常采用BJH(Barrett-Joiner- Halenda)模型。
◆Kelvin方程
Kelvin方程是BJH模型的基础,由Kelvin方程得出的直径加上液膜厚度就是孔道直径。弯曲液面曲率半径R‘=2γVm/[RT*ln(p0/p)],若要算弯曲液面产生的孔径R,则有R’Cosθ=R,由于不同材料的接触角θ不同,下图给出的不考虑接触角情况弯曲液面曲率半径R‘和相对压力p/po对应图:

◆滞后环
1.滞后环的产生原因
  这是由于毛细管凝聚作用使N2 分子在低于常压下冷凝填充了介孔孔道,由于开始发生毛细凝结时是在孔壁上的环状吸附膜液面上进行,而脱附是从孔口的球形弯月液面开始,从而吸脱附等温线不相重合,往往形成一个滞后环。还有另外一种说法是吸附时液氮进入孔道与材料之间接触角是前进角,脱附时是后退角,这两个角度不同导致使用Kelvin方程时出现差异。当然有可能是二者的共同作用,个人倾向于认同前者,至少直觉上(玄乎?)前者说得通些。
2.滞后环的种类
 滞后环的特征对应于特定的孔结构信息,分析这个比较考验对Kelvin方程的理解。
 H1是均匀孔模型,可视为直筒孔便于理解。但有些同学在解谱时会说由H1型滞后环可知SBA-15具有有序六方介孔结构,这是错误的说法。H1型滞后环可以看出有序介孔,但是否是六方、四方、三角就不知道了,六方是小角XRD看出来的东西,这是明显的张冠李戴;
 H2比较难解释,一般认为是多孔吸附质或均匀粒子堆积孔造成的,多认为是 “ink bottle”,等小孔径瓶颈中的液氮脱附后,束缚于瓶中的液氮气体会骤然逸出;
 H3与H4相比高压端吸附量大,认为是片状粒子堆积形成的狭缝孔;
 H4也是狭缝孔,区别于粒子堆集,是一些类似由层状结构产生的孔。
3.中压部分有较大吸附量但不产生滞后环的情况
  在相对压力为0.2-0.3左右时,根据Kelvin方程可知孔半径是很小,有效孔半径只有几个吸附质分子大小,不会出现毛细管凝聚现象,吸脱附等温线重合,MCM-41孔径为2、3个nm时有序介孔吸脱附并不出现滞后环。
◆介孔分析
  通常采用的都是BJH模型(Barrett-Joiner- Halenda),是Kelvin方程在圆筒模型中的应用,适用于介孔范围,所得结果比实际偏小。
  针对MCM-41、SBA-15孔结构分析的具更高精度的KJS(Kruk-Jaroniec-Sayari)及其修正方法,KJS出来时用高度有序的MCM41为材料进行孔分析,结合XRD结果,得出了比BJH有更高精度的KJS方程,适用孔径分析范围在2-6.5nm之间。后来又做了推广,使之有较大的适用范围,可用于SBA-15孔结构(4.6-30nm)的表征。
◆关于t-Plot和αs方法
  是对整条吸附或脱附曲线的处理方法,t-Plot可理解为thickness图形法,以氮气吸附量对单分子层吸附量作图,凝聚时形成的吸附膜平均厚度是平均吸附层数乘以单分子层厚度(0.354nm),比表面积=0.162*单分子层吸附量*阿伏加德罗常数。样品为无孔材料时,t-Plot是一条过原点直线,当试样中含有微孔,介孔,大孔时,直线就会变成几段折线,需要分别分析。αs方法中的下标是standard的意思,Sing提出用相对压力为0.4时的吸附量代替单分子层吸附量,再去作图,用这种方法先要指定一个标准,或是在仪器上做一个标样,处理方法和图形解释两种方法是类似的。两则之间可以相互转化,t=0.538αs
◆微孔分析
  含微孔材料的微孔分析对真空度,控制系统,温度传感器有不同的要求,测试时间也比较长,时间可能是普通样品的十倍甚至二十倍。由于微孔尺寸和探针分子大小相差有限,部分微孔探针分子尚不能进入,解析方法要根据不同的样品来定,需要时可借鉴相关文献方法来参考,再则自己做一批样品采用的是一种分析方法,结果的趋势多半是正确的。现在用一种模型来分析所有范围的孔径分布还是有些困难,非线性密度泛涵理论(NLDFT)听说是可以,但论文中采用的较少。

上一篇:比表面积仪特性参数
下一篇:材料的表面面积
产品目录
  • 化学吸附
  • 穿透曲线分析
  • 渗透率分析
  • 蒸汽吸附
  • 泡压法孔径分析
  • 比表面积测试仪
  • 比表面积仪
  • 比表面积及孔隙度分析仪
  • 比表面积分析仪
  • 孔隙度分析仪
  • 静态容量法孔径分析仪
  • 全自动氮吸附比表面积分析仪
  • 孔径分析仪
  • 静态法比表面和孔径分析仪
  • 介孔孔径分析仪
  • 全自动比表面及孔径分析仪
  • 孔容孔隙度分析仪
  • 比表面积测定仪
客户名录
清华大学;上海交通大学;上海大学(3台);华东理工大学;华南理工大学;天津大学(4台);北京理工大学;中国人民大学北京化工大学;南大学(3台);中国海洋大学;中国石油大学;福州大学;华侨大学;海南大学;大连理工大学;大连大学( 2台);西安工程大学;西安二炮工程学院;重庆大学;三峡大学;安徽大学(2台);吉林大学;新疆大学;河南大学;贵州大学;哈尔滨工业大学( 2台);哈尔滨理工大学;沈阳化工学院;沈阳工业大学;吉林师范大学;辽宁科技大学;昆明理工大学;武汉科技大学;南京工业大学(2台);内蒙古工业大学;山东农业大学;山东轻工业学院;山东理工大学;江西科技大学;河南理工大学;郑州轻工业大学;洛阳理工学院;西南师范大学;西北民族大学;浙江湖州师范学院;浙江理工大学;广西桂林师范大学化工学院;广西桂林师范大学环境学院;广西桂林电子科技大学;南昌大学生命科学院;南昌大学材料学院;湖南吉首大学;陕西师范大学;重庆师范大学;天津工业大学;国外客户;哈萨克斯坦国家电解铝厂;高而富石墨(斯里兰卡)公司;东洋油墨有限公司(日本);大冢化学有限公司(日本);南浦玻璃瓶工厂(朝鲜);丹东贸易有限公司(朝鲜); 宁波北仑检验检疫局;成都印钞公司;中国科学院物理研究所(2台);中国科学院过程研究所(3台);中国恩菲集团;中钢集团马鞍山矿山研究院;中国煤炭集团重庆研究院;中国建材国际工程有限公司;中钢集团马鞍山矿山研究院;中国北车集团大同电力机车;中国建筑股份有限公司;中国电子科技集团公司;上海空间电源研究所;江南石墨烯研究院;青海化工设计研究院;湖南化工研究院;云南化工冶金研究所;长春金属黄金研究院;安阳钢铁集团有限责任公司;华唯金属矿产国家研究中心;洛阳中硅高科技公司(2台);重庆长安汽车;上海双钱载重轮胎有限公司;上海华微纳米有限公司;上海捷虹颜料化工集团;上海贯裕能源科技有限公司;华微科技(苏州)公司(2台);汇福粮油纳米功能材料公司;河南思维能源材料有限公司;河南新乡科隆电器股份公司;河南焦作伴侣纳米材料公司;河南三门峡开曼铝业;洛阳优晶新能源有限公司;山东南山集团东海铝业;山东红日阿康化工股份公司;山东欣达化工有限公司;淄博广通化工有限责任公司;烟台希尔德新材料有限公司;青岛广星电子材料有限公司;垦利三合新材料有限公司 ;中科铜都粉体新材料公司;广州嘉维化工有限公司;深圳市美拜电子有限公司;宁夏东方特种材料公司(3台);江苏太仓诚信化工有限公司;江苏卓群纳米稀土股份公司;丽王化工(南通)有限公司
雅安永康纳米材料有限公司;德米特(苏州)电子环保公司;浙江德创环保科技有限公司;无锡确成硅化学有限公司;阜宁稀土实业有限公司;内蒙包头市金蒙稀土公司;包头市华辰稀土有限公司;九江有色金属冶炼厂;天津市英若华陶瓷有限公司
天津泽希矿加工有限公司;海港华泰功能陶瓷材料公司;湖北仙桃中星电子有限公司;西安宏星电子浆料科技公司;山西同德化工股份有限公司;山西恒大化工有限公司;山西省泰兴铝镁有限公司;安徽鑫源石英材料有限公司;中鼎密封件股份有限公司;自贡市中皓化工有限公司;四川硬质合金股份有限公司;雅安百图新材料有限公司;新源纳米材料(大连)公司;大连瑞尔精细陶瓷有限公司;北京冶科金属有限公司;嘉兴佳利电子有限公司;福建三祥工业新材料公司;福建晶山石英制品有限公司
; 比亚迪(惠州)有限公司;比克国际(天津)有限公司;中航锂电(洛阳)有限公司;湖南杉杉新材料(2台);浙江天能电子材料有限公司;浙江嘉利珂钴镍材料有限公司;深圳捷霸电池有限公司;深圳天贸电池有限公司;深圳力多威电池有限公司;深圳天骄科技开发有限公司;深圳岛原电子科技有限公司;深圳市雄韬电源科技有限公司;深圳创明电池技术有限公司;深圳迪凯特电池科技有限公司;广东汤浅蓄电池有限公司;佛山市金鹰兴业自动化仪表公司;九江市迪凯特电池有限公司;长沙晶鑫股份有限公司;长沙海容电子有限公司;长沙格翎电池材料有限公司;湖南雅城新材料有限公司;汨罗市鑫祥碳素制品公司;湖南湘誉新材料有限公司;湖北随州方正能源有限公司;多氟多化工股份有限公司;常州博杰新能源材料公司;镇江高博能源技术有限公司;江苏英泰电子有限公司;高而富石墨(青岛)有限公司;青岛平度华东石墨厂;平度市源兴石墨加工厂;青岛泰能石墨有限公司(2台);青岛天和石墨有限公司;青岛泰达天润碳材料公司(3台);青岛凌达化成有限公司;青岛黑龙石墨有限公司;青岛瀚博电子科技有限公司;青岛恒胜石墨有限公司;青岛田庄恒源石墨公司(2台);青岛希尤精细石墨化工有限公司;山东日照华轩新能源有限公司;内蒙古丰镇市大丰石墨有限公司;浙江振龙电源有限公司;浙江余姚宏远炭素公司(2台);长沙星城微晶石墨有限公司;广州市广鹏科学仪器有限公司;江苏和信电器制造有限公司;江苏舜天高新炭材有限公司;新乡明宇电源材料有限公司;河南金河石墨有限公司;洛阳冠奇工贸有限公司(2台);河南福森新能源科技有限公司;东莞雅普能源新材料有限公司 ;珠海银通交通能源投资有限公司;珠海市科立鑫金属材料有限公司;江苏巨洋电池新材料有限公司;宁波科博特钴镍有限公司;海南金亿新材料股份有限公司;济宁市**科技有限公司 ;武汉中聚能源科技有限公司;黄山王马电源集团有限公司;山西泰众新能源有限公司;武陟县鑫凯科技有限公司;绵阳天明新能源科技有限公司;中科恒达石墨股份有限公司;;大连太阳集团;吉林市聚能新型碳材料有限公司;辽宁弘光科技集团有限公司;吉林吉恩镍业集团;赣州市芯隆新能源材料有限公司;黑龙江溢祥新能源有限公司;峨眉山长庆化工新材料有限公司;北京中航长力能源科技有限公司;北京市东西电子技术研究所;天津贝特瑞电池材料有限公司;
Copyright@ 2003-2025  贝士德仪器科技(北京)有限公司 版权所有  电话:13810685266 传真: 地址:北京市海淀区上地十街1号楼607 邮编:100085